В многоквартирных домах большей части областей Российского государства, как правило, используется центральное теплоснабжение, однако с недавних пор стали набирать популярность системы автономного отопления. Как для первого, так и для второго случая требуется проведение гидравлического расчета системы отопления.
Гидравлический расчет
Практической целью расчета гидравлики системы отопления является обеспечение совпадения расхода в элементах схемы с расходом фактическим. Объем теплоносителя, попадающего в отопительные приборы, должен сформировать определенный температурный режим внутри частного дома, учитывая наружные температуры и заданные заказчиком для каждой комнаты, согласно ее функциональному назначению.
Для корректного проведения гидравлического расчета отопления потребуется изучить основную терминологию, чтобы лучше понять происходящие процессы в пределах системы. К примеру, увеличение скорости нагретой рабочей жидкости может спровоцировать параллельное увеличение гидросопротивления в магистралях трубопровода. Измеряется сопротивление системы отопления в метрах водного столба.
Расчет гидравличских потерь напора по таблицам Шевелева намного упростит выполнение этой задачи.
Большинство классических схем теплоснабжения состоит из следующих обязательных элементов:
- 1. теплогенератора;
- 2. магистрального трубопровода;
- 3. отопительных элементов (регистров или радиаторов);
- 4. гидравлической арматуры (запорной и регулировочной).
С помощью регулировочной арматуры проводится увязка отопительной системы. Каждому элементу присуща своя индивидуальная техническая характеристика, которая используется для гидравлического расчета системы отопления. Онлайн-калькулятор или таблица excel с формулами и алгоритмами вычислений смогут в значительной степени упростить эту задачу. Эти программы предоставляются абсолютно бесплатно и никак не повлияют на бюджет проекта.
Диаметр труб
Чтобы рассчитать гидравлику отопительной системы, понадобится информация по тепловому расчету и аксонометрической схеме. Для подбора сечения труб используются целесообразные, с экономической точки зрения, итоговые данные теплорасчета:
- 1.
Оптимальной разницей температур между горячей и охлажденной рабочей жидкостью для двухтрубного контура является значение 20 ºC. Δtco = tг — tо = 90 ºС — 70 ºС = 20 ºС, где tг — температура горячей воды, tо — температура охлажденного теплоносителя.
- 2. Потребление рабочей жидкости (G) для однотрубного контура (кг/час).
- 3. Оптимальная скорость (V) перемещения рабочей жидкости от 0,31 до 0,72 м/с.
- 4. Расчетное значение потока тепла (Q).
- 5. Показатели плотности воды.
Чтобы определить внутренний диаметр каждого участка, используют таблицу. Предварительно каждая отопительная ветвь разбивается на сегменты начиная с самой конечной точки. Разбивка осуществляется исходя из расхода теплоносителя, который варьируется от одного отопительного элемента к другому. Новый сегмент начинается после каждого отопительного прибора.
На первом сегменте определяют значение массового расхода теплоносителя, отталкиваясь от показателя мощности последней батареи: G = 860q / ∆t, где q — мощность отопительного элемента (кВт).
Теплоноситель на первом участке рассчитывается следующим образом: 860 x 2 / 20 = 86 кг/ч. Полученные результаты непосредственно наносятся на аксонометрическую схему, однако, чтобы продолжить дальнейшие вычисления, полученное итоговое значение потребуется перевести в другие единицы измерения — литры в секунду.
Для выполнения конвертации применяют формулу: GV = G / 3600 х ρ, где GV — ёмкостное потребление жидкости (л/сек), ρ – показатель плотности теплоносителя (при температуре 60 ºС составляет 0,983 кг/литр). Получается: 86 ÷ 3600 x 0,983 = 0,024 л/сек. Необходимость в конвертации меры физической величины обосновывается использованием табличных значений, при помощи которых определяется сечение трубопровода.
Определение сопротивления
Зачастую инженеры сталкиваются с расчетами систем теплоснабжения крупных объектов. Такие системы требуют большого количества отопительных приборов и сотни погонных метров труб. Выполнить расчет гидравлического сопротивления системы отопления можно с помощью уравнений или специальных автоматизированных программ.
Чтобы определить относительные теплопотери на сцепление в магистрали, применяют следующее приближенное уравнение: R = 510 4 v 1.9 / d 1,32 (Па/м). Применение данного уравнения оправдано для скоростей не более 1,25 м/с.
Если известно значение потребления горячей воды, то применяют приближенное уравнение для нахождения сечения внутри трубы: d = 0,75 √G (мм). После получения результата потребуется обратиться к специальной таблице, чтобы получить сечение условного прохода.
Самым утомительным и требующим больших затрат труда будет вычисление местного сопротивления в соединительных частях трубопровода, регулирующих клапанах, задвижках и отопительных приборах.
Выбор циркуляционного насоса
Существуют два класса отопительных насосов: с роторами мокрого и сухого типа. Для отопительной системы частного домовладения с небольшой протяженностью трубопровода лучше всего подойдет насос мокрого типа. С помощью ротора, вращающегося в середине корпуса, циркуляция рабочей жидкости ускоряется. Благодаря жидкой среде, в которую помещен ротор, механизм смазывается и охлаждается. Устанавливая насос такого типа, необходимо контролировать горизонтальность вала.
Насосы сухого типа применяются в системах с большой протяженностью. Электродвигатель и рабочая часть разделены уплотнительными кольцами, которые необходимо менять один раз в три года. Теплоноситель с ротором не контактирует. К преимуществам насосов данного типа можно отнести высокую производительность — примерно 80%. Из недостатков выделяют высокий уровень шума и контроль за отсутствием пыли в двигателе.
Основным назначением циркуляционного насоса является создание напора теплоносителя, способного справляться с гидравлическим сопротивлением, возникающим в определенных участках магистрали, и обеспечение нужной производительности путем транспортировки тепла в системе, необходимого для прогревания жилища.
Следовательно, выбирая циркуляционный насос, необходимо сделать расчет потребности помещения в теплоэнергии, а также выяснить значение общего гидравлического сопротивления системы теплоснабжения. Не зная этих данных, подобрать соответствующий насос будет крайне сложно.
Производительную мощность электронасоса можно собственноручно вычислить, используя уравнение: Q = 0,86 x P / Δt, где Q — требуемая эффективность (м3 /час), P — искомый тепловой расход (кВт), Δt — температурный перепад между подающим и обратным контурами, с помощью которого определяется объем тепловой энергии, отдаваемой участком системы теплоснабжения.
Электронасос с контроллером мощности подбирают, ориентируясь на производительность, предварительно выставив регулятор в среднее положение. Такая манипуляция позволит подкорректировать мощность в большую или меньшую сторону при ошибочном действии. Скорости в циркуляционном насосе могут переключаться как в ручном, так и автоматическом режиме. В зависимости от протяженности трубопровода применяются разные типы отопительных насосов.